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Exercise 2.5.12

a S111. € alrvergence eorern, determine an alternative expression 1or “u uarayaz.
Using the diverg th determi lternati ion f Viudxdyd

(b) Using part (a), prove that the solution of Laplace’s equation V?u = 0 (with u given on the
boundary) is unique.

(c) Modify part (b) if Vu - i = 0 on the boundary.

(d) Modify part (b) if Vu - fi + hu = 0 on the boundary. Show that Newton’s law of cooling
corresponds to h > 0.

[TYPO: There should be three integral signs here.]

Solution

Note that the following formulas result from the product rule. Subscripts denote partial
derivatives.

(uuy) = ui 4 Ulpy

—(uuy) = u + Uy,

9
Oz

0
Jy
88 (uuy) = uz + u,,

Part (a)

///uv2u av = ///u(uch + Uy + uzz) dV
- ///(uum + Uy + utzz) AV
/// [ (utg) — uZ + aay(uuy) - “32/ + %(uuz) —w2|av
/// o (Ul wty, wu ) — (u? +u§ +u?)] dv
/// +(uVu) — [Vul’]dV
= // V- (uVu)dV — // (V)2 dV

Apply the divergence theorem to the first volume integral to turn it into a surface integral.

///uv2udv = #(uvu) -fdS — // (Vu)2av (1)
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Part (b)
Consider the Laplace equation in some domain D with a prescribed Dirichlet boundary condition.

V32U =0 inD
U=f onbdy D

Suppose there is a second solution to this problem.

V2V =0 inD
V=f onbdy D

Subtract the respective sides of each equation.

VXU -V*V =0 inD
U-V=f—f onbdy D

Simplify each equation.

VX U-V)=0 inD
U—-V =0 onbdy D

Let W=U-V.

VZW =0 inD
W =0 onbdy D

Multiply both sides of the first equation by W.
WV*W =0 inD

Integrate both sides over the volume of D.

// WV2W =0
D

Use equation (1) here with W instead of u.

# (WVW)-ﬁdS///D(VW)2dV:O

bdy D

Since W = 0 on the boundary of D, this first term vanishes.

# (OVW) - dS — ///D(VW)QdV =0
bdy D
—///D(VW)%W =0
///D(VW)2 dV =0

Multiply both sides by —1.
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By the vanishing theorem, the integrand must be zero.
(VW)2 =0 in D

Expand the left side.
W2+ W, +WZ2=0 inD

Since each term is nonnegative, they must all be zero individually.

W2=0 — W,=0
Wy220 - Wy=0 = W =constant in D
W2=0 — W.=0

Since W = 0 on the boundary of D, this constant must be zero because W is continuous.
W=0 inD

This means the two solutions, U and V, are one and the same function. Therefore, the solution to
the Laplace equation with a Dirichlet boundary condition is unique.

Part (c)

Consider the Laplace equation in some domain D with a homogeneous Neumann boundary
condition.

V32U =0 inD
VU-1=0 onbdy D

Suppose there is a second solution to this problem.

V2V =0 inD
VV-i=0 onbdy D

Subtract the respective sides of each equation.

VU -V?V =0 inD
VU-A—VV-a=0 onbdy D

Simplify each equation.

VX U-V)=0 inD
V{U—-V)-aa=0 onbdy D

Let W=U-YV.

VW =0 in D
VW -fi=0 onbdy D

Multiply both sides of the first equation by W.

WV2W =0 in D
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Integrate both sides over the volume of D.

// WV2W =0
D

Use equation (1) here with W instead of w.

# (WVW)-ﬁdS—///D(VW)2dV:O

bdy D

Since VW - i = 0 on the boundary of D, this first term vanishes.

# (W~O)dS—///D(VW)2dV:O

bdy D
—///D(VW)ZdV =0
///D(VW)2 dV =0

By the vanishing theorem, the integrand must be zero.

Multiply both sides by —1.

(VW) =0 inD

Expand the left side.
W2+ W, +WZ2=0 inD
Since each term is nonnegative, they must all be zero individually.
W2=0 — W,=0
W;ZO — Wy=0 = W =constant in D
W2=0 — W.=0

Therefore, the solution to the Laplace equation with a homogeneous Neumann boundary
condition is unique to within an additive constant.
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Part (d)
Consider the Laplace equation in some domain D with a homogeneous Robin boundary condition.

VU=0 inD
VU -+ hU =0 on bdy D

Suppose there is a second solution to this problem.

V2V =0 inD
VV-a+hV =0 onbdy D

Subtract the respective sides of each equation.

VU -V?V =0 inD
VU-H—VV-a+hU—hV =0 onbdy D

Simplify each equation.

V3 U-V)=0 inD
VU-V)-a+h(U—-V)=0 onbdy D

Let W=U-V.

VW =0 inD
VW -a+hW =0 on bdy D

Multiply both sides of the first equation by W.
WV*W =0 in D

Integrate both sides over the volume of D.

// WV2W =0
D

Use equation (1) here with W instead of w.

# (WVW)-ﬁdS—///D(VW)QdV:O

bdy D

Use the fact that VW - ih = —hW on the boundary of D.

# (W (WY dS — ///D (VIV)2dV = 0

bdy D

— # hWQdS—///D(VW)de:O

bdy D
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Multiply both sides by —1.

# hWQdS+///D(VW)2dV:0

bdy D

Provided that h > 0, each integrand is nonnegative, which means each of the integrals is
nonnegative. Each term must be zero individually for the equation to be satisfied.

# MW2dS =0

bdy D

///D(VW)2 dV =0

By the vanishing theorem, each integrand must be zero.

AW?2=0 onbdy D
{(VW)2—0 in D
W =0 onbdy D
{W§+W;+W3=o in D

Since each term is nonnegative in the second equation, they must all be zero individually.

W2=0 — W,=0
W;:() - Wy=0 = W =constant in D
W2=0 — W.=0

Since W = 0 on the boundary of D, this constant must be zero because W is continuous.
W=0 inD

This means the two solutions, U and V, are one and the same function. Therefore, the solution to
the Laplace equation with a homogeneous Robin boundary condition is unique if A > 0. Writing
the boundary condition as

—Vu -0 = hu,

——

heat flux

we see that the heat flux out of D (in the direction of i, the outward unit normal vector) is
proportional to the temperature on the boundary of D. If h > 0, this outward flow of heat from
the boundary results in cooling. If h < 0, then heat will flow inward, resulting in heating.
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